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Hierarchical Text Classification (HTC)

Input text: [“David Beckham's new book will be published.”]

Problem Definition

Features | H = (V,E) Y C ).

Lo
Taxonomic
Hierarchy

-----------------------------------

Figure 1: This short sample is tagged with news, sports,
football, features and books. Note that HTC could be
either a single-path or a multi-path problem.
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Figure 1: Comparison of previous methods and our
HPT. (a) Previous models formulate HTC as a multi-
ple binary classification problem, and utilize the PLM
in a fine tuning paradigm . (b) HPT follows a prompt
tuning paradigm that transforms HTC into a hierarchy-
aware multi-label MLM problems.
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(1)Hierarchy and flat gap.
(2)Multi-label and multi-class gap.
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Step 1: prompt construction [ Template] Step 4: answer-label mapping [Mapping]
( Input: x=1love this movie. ] { Input: x =1 love this movie.
Template: [x] Step 3: answer prediction [Prediction] Template: [x] Answer:
OveraF:I it \'Na o Overall, it was a {fantgstic:@,
2] n’10vie. [ Input: x =1 love this movie. ] [z] movie. boring:®}

Prompting: x’ = love this movie.

Template: [x] Answer: k Overall, it was a [z] movie.
Overall, it was a {fantastic:©,
[z] movie. boring:®} . <

Predicting: X’ = | love this movie.
Step 2: answer construction [Verbalizer] Overall, it was a fantastic movie.
Prompting: x’ =1 love this movie. ] :

e d N [ Overall, it was a [z] movie.
0| © | -> |[fantastic ( T0 8 momr ) Mapping: fantastic =>©
A

) Predicting: x’ = | love this movie.
-> |boring

Overall, it was a

-_— I
label answer
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Figure 1: Comparison of previous methods and our
HPT. (a) Previous models formulate HTC as a multi-
ple binary classification problem, and utilize the PLM
in a fine tuning paradigm . (b) HPT follows a prompt
tuning paradigm that transforms HTC into a hierarchy-
aware multi-label MLM problems.
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MLM Loss ' Zero-bounded Multi-label Cross Entropy Loss
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Input: David Beckham’s new book will be published.

Figure 2: The architecture of HPT during training. HPT transforms HTC into a hierarchy-aware multi-label MLM
problem that focuses on bridging rwo gaps between HTC and MLM. (1) To bridge the hierarchy and flat gap, HPT
incorporates the label hierarchy knowledge into dynamic virtual template and label words construction. (2) To

bridge the multi-label and multi-class gap. HPT transforms HTC into a multi-label MLLM task with a zero-bounded
multi-label cross entropy loss.
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H=[hl?,_,?hN,htI,h}J,---ghtL;h%] (2)

MLM Loss l Zero-bounded Multi-label Cross Entropy Loss ‘

a T _ T‘“ OC;E) New:" OO0 e V3 _"_;;H_ _____ where h, is the hidden state of the i-th ep,
book—’C;J i ?‘_ QQQ]F.:Ms ?‘_ 888 Zhh (?‘_Bmmau which corresponds to the i-th layer of the
v QOO0 m GCOD)COO s therarchy 1} label hierarchy.

n L= S t— ~_____ Constraint___|

[ BERT Encoder without MLM Head
A A A A A A A A A A A

JOBEHBEEABEEE

~

- !‘:i v
T T €MASK] T T T T t; epren; 2 eprep] 3 €pRED) l(/t; ).;;;5_‘5?_’_

N~

TN ..

Embedding

Formally, for h’5, we define a verbalizer Verb,,

Ui, Ui ENm

3
&,  Others %)

Verb,, (y;) = {

where N, is the label set of the m-th layer and
@ denotes that there is no label word for labels at

other layers.

f

|

|

I
Input: David Beckham’s new book will be published. L

Hierarchy Constraint T =[x1,....,xn,t1.ep,...,tp,ep] (1)

H = (), F) adepth of L input text x where X = [xy,...,xy] is word embeddings and
ep 1s the embedding of [PRED], which is initial-

[CLS] x [SEP] [V1] [PRED] ized by the [MASK] token of BERT. {t; f'=1 are

(V2] [PRED] ... [VL] [PRED] [SEP]  Jayer-wise template embeddings.
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MILM Loss [ Zero-bounded Multi-label Cross Entropy Loss ]
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I
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BERT Encoder w1th0ut MLM Head I
A 4 ,’- .
g g g |y ) eatures
I t_f r‘b .....................
O '
Cimask] T T ti eprep) G Cprep] 3 €prED] Jp (0wt A AT T '
Emb dd 7 -———= -\I o AR ealth Art Books
mbecae ! Hierarchy | . (1) o ,
4 | Injection | * .._FOOtb."‘ll Basketball _ _ _ _»
Hierarchy Injection Input: David Beckham’s new book will be published. -_____ ]
(k+1) _ ~ Wk (k) t1.....1
D) =ReLU( Y~ CUW gy (@) 1,5l ¢ =t + g 5)
veN (u) U{u} :
] Vi Y S y . . .
where NV (u) denotes the neighbors for node u , ¢, " where the new template embedding with hierarchy

is a normalization constant and W) g Rdmxdm ti 8t knowledge, t';, is injected into BERT replacing t;
is the trainable parameter. in Equation 1.
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where NP and N are the target and non-target
label set of the input text.

[ BERT Encoder Wlthout MLM Head I
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Input: David Beckham’s ntw book will be published. _____________Eli'lfftio_n_ll ¥ FOOtb'all BﬂSkeEbE_lll --= = log(l + Z Bsy"") + log(l + Z B_Syi)
oSut yiEN™ YiENP
C Lom = —1 ©)
CE — 0og C

Lpce = — Z(yilﬂg(ﬂyi) + (1 —yi)log(1 —sy,)) D i €7V

i C (7)

©) =log(1+ } = emw™™w)
where s, is the predicted sigmoid score of the =
i i=1,i#t

label y; for the input. where 1, is the gold label for the input.



o ATAI
i@-‘ Chongging Lhiversity Advanced Technique o

of Technology Atificial Intelligence

Approach

MILM Loss [ Zero-bounded Multi-label Cross Entropy Loss ]
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[ BERT Encoder Wlthout MLM Head
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T T €|MASK] T T T T ti epren; t2 €prep; 3 €prep

Embedding 1 -
I Hierarchy
_ _ _ | Injection
Input: David Beckham’s new book will be published. - - v
Zurce =log(l + Z evi) Lo
wEN: (10) where s, = vIh'} + b;,, and b, is a learnable Lan = Zl Lzvrce + Ly (D
— N =
+ log(1 + Z e~ %vi) bias term. N7, and N are the target and non-
yiENE, target label set at the m-th layer for the input text

respectively.



Lo ATAI
@ gﬁ_?e'mgth Uhiversity Advanced Technique of
' ogy

Avtificial Intelligence

Method Template
Hard oromot [CLS] x [SEP] The text is Dataset  |Y| Depth Avg(|y;|) Train  Dev Test
promp about [MASK] [SEP] WoSs 141 2 20 30070 7518 9397
CLS SEP] [V1 NYT 166 8 7.6 23345 5,834 7,292
Soft prompt [CLS] x [SEP] [V1] RCVI-V2 103 4 324 20833 2316 781265
[VZ] ... [VN] [MASK] [SEP]
HpT [CLS] x [SEP] [V1] [PRED] [V2] Table 4: Data statistics. |Y| is the number of classes.

[PRED] ... [VL] [PRED] [SEP] Depth is the maximum level of hierarchy. Avg(|y;|) is

the average number of classes per sample.

Table 5: Example templates of hard prompt, soft
prompt and our method. x is the original text.
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Model WOS (Depth 2) RCV1-V2 (Depth 4) NYT (Depth 8)
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1  Macro-F1

TextRCNN (Zhou et al., 2020) 83.55 76.99 81.57 59.25 70.83 56.18
HiAGM (Zhou et al., 2020) 85.82 80.28 83.96 63.35 74.97 60.83
HTCInfoMax (Deng et al., 2021) 85.58 80.05 83.51 62.71 - -
HiMatch (Chen et al., 2021) 86.20 80.53 84.73 64.11 - -
BERT (Wang et al., 2022) 85.63 79.07 85.65 67.02 78.24 66.08
BERT+HiAGM(Wang et al., 2022) 86.04 80.19 85.58 67.93 78.64 66.76
BERT+HTCInfoMax(Wang et al., 2022) 86.30 79.97 85.53 67.09 78.75 67.31
BERT+HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 - -
HGCLR (Wang et al., 2022) 87.11 81.20 86.49 68.31 78.86 67.96
BERT+HardPrompt (Ours) 86.39 80.43 86.78 68.78 79.45 67.99
BERT+SoftPrompt (Ours) 86.57 80.75 86.53 68.34 78.95 68.21
HPT (Ours) 87.16 81.93 87.26 69.53 80.42 70.42

Table 1: F1 scores on 3 datasets. Best results are in boldface.
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Ablation Models Micro-F1 Macro-Fl1
HPT 80.49 71.07
r.m. hierarchy constraint 80.32 70.58
r.m. hierarchy injection 80.41 69.71
r.p. BCE loss 79.74 70.40
rm. MLM loss 80.16 70.78 « Football Basketball
with random connection 80.12 69.42 - T - " =T
Table 2: Performance when remove some components Root
of HPT on the development set of NYT. rm. stands for (D N
remove. r.p. stands for replaced with. 2 : ows
r‘_'\\L y I
Ablation Models Micro-F1 Macro-F1 e Sports
HPT 8049 7107 O Football
r.m. hierarchy injection 80.41 69.71 (a) Depth increasing  (b) Random connection
with depth increasing 80.48 70.95
with random connection 20.12 69 42 Figure 5: Two connections to aggregate node features.

They add more connections (red dash line) besides
the original connections (black dash line) (a) Depth
increasing connects a virtual node with labels on the

same and shallower layers. (b) Random connection
stands for remove. adds random connection per node.

Table 6: Performance of different connections of hi-
erarchy injection on the development set of NYT. r.m.
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Ablation Models Micro-F1 Macro-Fl1 Ablation Models Micro-F1 Macro-F1
HPT 87.88 81.68 HpT 88.37 70.12
r.m. hierarchy constraint ~ 87.34 81.27 r.m. hierarchy constraint ~ 87.62 69.04
r.m. hierarchy injection 87.58 81.54 r.m. hierarchy injection 87.57 68.53
r.p. BCE loss 87.17 80.78 r.p. BCE loss 87.79 68.12
r.m. MLM loss 87.22 81.36 rm. MLM loss 87.83 69.76
with random connection 87.56 81.42 with random connection 88.22 68.86
Table 7: Performance when remove some components Table 8: Performance when remove some components

of HPT on the development set of WOS. r.m. stands for of HPT on the development set of RCVI-V2. rm.
remove. r.p. stands for replaced with. stands for remove. r.p. stands for replaced with.
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0.9 —s BERT 0,80 —¥— BERT
_ —+— BERT with hard prompt D BT oot et
0.85 —4— BERT with soft prompt —&— HPT
\ —a— HPT 0.75
= 080 £
Label Top 8§ nearest words E = oo
(different layers separated by */’) Her HPT (r.m. hierarchy) 2 075 2
3] [
[1] hockey [2]league [1]hockey [2] national = = 085
News/Sports/Hockey/ [3] national [4] 2011  [3] league [4] 2012 07 '
National Hockey League [5] 2013 [6] ##° [5] 2008  [6] 1996
[7]2012  [8] football [7] 2010 [8] 2014 065 0.80
[1] features [2]. [1]. [2] features 1(4)  2(27)  3(81)  4(47)  =25(37) *B0%  B0%~B0% 40%-60% 20%~40%  <20%
Features/Theater/ [3] and [4] the [3] and [4] the Layer (#Label) Amount of training samples
News and Features [5] theatre [6] ; [5]. [6] :
[7]. [8] news  [7] of [8] news (El) (b)

Table 3: Top 8 nearest words of 2 learnable virtual label ~ Figure 3: Macro F1 scores of label clusters on the de-

words in NYT dataset. velopment set of NYT. (a) Label clusters grouped by
depth in the hierarchy. (b) Label clusters grouped by
amount of training samples. >80% represents cluster
of top 20% labels ranking by amount of training sam-
ples. The rest clusters are arranged similarly.
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Figure 4: F1 scores on 3 mini training dataset with only
10% training instances of the full training dataset. We
report the average scores with standard deviation over
3 different runs.
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